Facebook Ads to BigQuery

This page provides you with instructions on how to extract data from Facebook Ads and load it into Google BigQuery. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Google BigQuery?

Google BigQuery is a data warehouse that delivers super-fast results from SQL queries, which it accomplishes using a powerful engine dubbed Dremel. With BigQuery, there's no spinning up (and down) clusters of machines as you work with your data. With all of that said, it's clear why some claim that BigQuery prioritizes querying over administration. It's super fast, and that's the reason why most folks use it.

Getting data out of Facebook

Data can be retrieved programmatically via the Facebook Ads Insights API, which is available to anyone who uses the platform. Don't confuse this with the API Facebook offers for placing and managing ads, which is not relevant to our purposes here.

By following the process in the API documentation, you'll make calls to the Ads Insights API in order to retrieve your data. You'll have access to endpoints like impressions, clickthrough rates, and CPC all broken out by time period.

Sample Facebook Ads data

Below is an example of what that response might look like when you query the Ads Insights API.

{
   "data": [
      {
         "impressions": "1862555",
         "adset_name": "My ad set",
         "cost_per_action_type": [
            {
               "action_carousel_card_name": "My Carousel Card 1",
               "action_type": "app_custom_event.fb_mobile_activate_app",
               "value": 0.093347346315861
            },
            {
               "action_carousel_card_name": "My Carousel Card 2",
               "action_type": "app_custom_event.fb_mobile_activate_app",
               "value": 0.38324089579301
            },
            ...
         ],
      }
   ]
}

Loading data into Google BigQuery

Google Cloud Platform offers a helpful guide for loading data into BigQuery. You can use the bq command-line tool to upload the files to your awaiting datasets, adding the correct schema and data type information along the way. The bq load command is your friend here. You can find the syntax in the bq command-line tool quickstart guide. Iterate through this process as many times as it takes to load all of your tables into BigQuery.

Keeping Facebook Ads data up to date

Outstanding, you now have a script that loads Facebook Ads data into your data warehouse. It's time to start thinking about how to keep the data up to date. Undoubtedly you'll have plenty of new campaigns to analyze as your business grows. The best way to keep data up to date is to write you script so that it can identify new and updated data. You can do this by building out logic with primary keys that auto-increment. Updated_at or created_at are some good examples. After you've built in this functionality, you can set up your script as a cron job or continuous loop to grab new data as it appears.

Other data warehouse options

BigQuery is really great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Postgres or Redshift, which are two RDBMSes that use similar SQL syntax. If you're interested in seeing the relevant steps for loading this data into Postgres or Redshift, check out To Redshift and To Postgres.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Facebook Ads data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Google BigQuery data warehouse.